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Abstract Datacenter servers are stepping into an era marked by powerful multi-
/many-core processors. Severe problems such as I/O contentions in those large-scale
platforms pose an unprecedented challenge. Prior studies primarily considered I/O
bandwidth as a major performance bottleneck. However, our work reveals that in many
cases the fundamental cause of I/O contentions is the inefficiency of OS schedulers.
Particularly, the modern system is not aware of this fact and thus suffers from poor
I/O performance, especially for datacenter servers. Based on our findings, we propose
a new software-based scheduling approach, WiseThrottling, to reduce I/O contention.
WiseThrottling performs asynchronous and self-adjustment scheduling for concurrent
tasks. We evaluate our approach across a wide range of C/OpenMP/MapReduce work-
loads on a 64-core server in Dawning Cluster datacenter. The experimental results
exhibit that WiseThrottling is effective for reducing the I/O bottleneck and it can
improve the overall system performance by up to 207 %.
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1 Introduction

“I/O bottleneck” is known as one of the most serious problems that hurt the overall
system performance in modern computing environments with multicore system such as
datacenters and clusters [2,31] and many-core system such as GPUs [26]. However,
in such multicore servers, two types of I/O conflicts, described as inter- and intra-
task, lead to more severe I/O bottleneck. As shown in Fig. 1, inter-task I/O conflict
typically comes from concurrent user tasks (e.g., batch-mode processing), while intra-
task I/O conflict, such as the I/O contention between concurrent workers/reducers of a
MapReduce application, often happens among the children of a single task. As people
are increasingly dependent upon data intensive computing, I/O contention is becoming
an increasingly significant issue [2,17,31].

Many studies aim to address the I/O problem. As hardware has once been considered
the most critical factor that affects the I/O performance, lots of previous work primarily
focused on optimizing the hard disk access behaviors to mitigate I/O latencies. For
example, the efforts in [14,15] re-schedule I/O requests before they are sent to I/O
devices, and [13] uses shared memory as disk caches, so that the expensive disk
scanning latency can be dramatically reduced.

However, the root reason leading to serious I/O problem is not a hardware-only
problem that can be solved by offering more I/O bandwidth and storage resources,
but the inefficiency and ineffectiveness of I/O schedulers at the Operating System
(OS) level in many common cases. The existing scheduler is ignorant of different
sensitivities to I/O contentions from co-running jobs. To handle all I/O requests from
concurrent tasks, it distributes the service timeslices to all co-runners “blindly”. Under
such scenario, the disk arm has to constantly move from one co-runner’s requests
to another. In general, doing so will destroy the original continuity of a task’s file
operation, and thus degrade the performance of the tasks. The problem becomes more
severe in the large-scale servers equipped with a large number of CMPs, and this
causes underutilization of existing I/O bandwidth resources. To solve this problem,
some studies focus on optimizing the OS task scheduler or I/O scheduler. For instance,
the effort in [22] for MapReduce optimization uses I/O throttling approach to mitigate
the negative effects caused by streaming I/O contentions, which is an enforcement

Fig. 1 Two types of I/O conflicts in a server node in datacenter
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of the existing I/O scheduler. Another work [21] that proposes a simple dynamic
scheduling method also shows that it is necessary, and often effective, to optimize the
OS scheduler to benefit the overall system performance in some cases.

Optimizing the OS level scheduler is a cost-effective approach to improve the over-
all system performance because a software approach is easier to be used in practice,
and the existing storage resource can be better utilized without any hardware modifi-
cations that may incur expensive overhead. Thus, many recent research efforts adopt
a software-based approach. Nevertheless, the previous studies also have their short-
comings. First, they often use specific scheduling intervals and thus are not able to
handle the irregular I/O contention behaviors efficiently. Second, they cannot detect
the application’s sensitivities to I/O contentions on-the-fly accurately in the cases
where multi-threaded or multi-programmed tasks are running together. In summary,
the existing I/O scheduler needs a “wise” scheduling approach, which is capable of
handling diverse concurrent I/O demands and thus benefits the I/O bandwidth utiliza-
tion. To the best of our knowledge, not only the fairness-oriented scheduler in Linux
kernel, but also the mainstream I/O scheduling mechanism, faces the same problem
of lacking a wise scheduling.

In this paper, we propose an asynchronous task scheduling mechanism, WiseThrot-
tling, to meet the challenges in modern data intensive computing environment with
heavy I/O contention. WiseThrottling works orthogonally with the default Linux I/O
scheduler, and schedules I/O behaviors to avoid resource contention with reasonable
heuristics. The proposed scheduling mechanism has the following features. First, it
maintains an adaptive and non-uniform I/O resource description for each running task,
and thus its scheduling is not “blind” but self-adjusted and scalable for all concurrent
tasks. Second, WiseThrottling is sensitive to each task’s I/O features within small
“timeslices”. Therefore, it is able to make proper scheduling decisions in real-time
and dynamic way. Third, our mechanism supports both fine-grain and coarse-grain
scheduling, and can mitigate both inter-task and intra-task I/O contention. Fourth, our
approach can be easily deployed in modern CMP system without significant overhead,
and the proposed scheduling methodology is scalable to large-scale CMP platforms.

We implement WiseThrottling on a 64-core server in Dawning cluster datacenter.
To verify the effectiveness of our method, we compare it with the current Linux
OS scheduler. The evaluations are conducted for more than 20 workloads that are
composed of C/OpenMP/MapReduce applications. These workloads represent three
typical service patterns, similar-pattern services, compounded-pattern services and
batch-mode services in Dawning cluster datacenter. The experimental results show
that WiseThrottling is effective to mitigate the negative performance pain from both
inter- and intra-task I/O conflicts. The proposed mechanism can improve the overall
system performance by up to 207.0 % for similar-pattern services, 11.2–28.7 % for
compounded-pattern services, and 24.9–26.7 % for batch-mode services.

This paper makes the following contributions:

• We identify that, in large-scale CMP systems, I/O bandwidth is not always the
determining factor for the system performance. The inefficiencies in mainstream
schedulers contribute more to performance degradations than hardware factors,
and are shown to be the major bottlenecks.
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• We identify two key metrics, which are used to facilitate I/O optimization under
the scenario of I/O competitions in modern large-scale CMP servers.

• We identify that different I/O interfaces can lead to different I/O competition
behaviors. This finding motivates us to adopt a dynamic scheduling approach as
the solution.

• We propose and implement a new asynchronous scheduling policy, WiseThrot-
tling, for large-scale servers, which can mitigate both inter-task I/O conflicts and
intra-task I/O conflicts, and thus improve the overall system performance.

• We extensively evaluate WiseThrottling on a 64-core server in Dawning datacenter
using diverse applications including C/OpenMP/MapReduce applications. Exper-
iments over more than 20 workloads show that WiseThrottling is very effective in
mitigating I/O contentions (achieves up to 207 % performance improvement).

The rest of the paper is organized as follows: Sect. 2 discusses related work. Section 3
expatiates the two inefficiencies that the current schedulers encounter when deal-
ing with I/O contentions. Section 4 describes the implementation of WiseThrottling.
Section 5 presents the performance measurements and analyzes using the proposed
method for a variety of tasks. Section 6 draws the conclusion and discusses the future
work.

2 Related work

The I/O bottleneck, commonly considered as the mismatch between the file trans-
action power and the processor computing power or memory storage capacity, has
been well studied. It has been tackled from a very broad scope, including optimizing
from applications, operating system, or parallel task management, etc., within parallel
computing environments.

2.1 Parallel I/O optimizations

Noncontiguous I/O requests are one of the key reasons that lead to poor I/O per-
formance. There are many significant research works from last century, which have
devoted to combining small and noncontiguous I/O operations.

Parallel I/O is an important research topic for high-performance computing. Two-
phase I/O [6], data sieving and collective I/O [35], etc., are all efforts for enhancing
parallel I/O. Static [35] or dynamic data sieving [20] is proven to be the most efficient
approach which has been applied widely. Some other approaches are more practical
and widely used through combination with parallel I/O API [35], e.g., the combination
of data sieving with ROMIO [36] or the combination of list I/O with ROMIO [7]. Work
in [27] also proposes a performance model to detect and combine parallel I/O by thread
grouping for many-core system.

I/O operations scheduling is an effective approach for disk scanning reduction. The
scheduling on I/O operations can benefit from high concurrency among I/O operations
[14,15]. The work in [11] is an extension work based on previous works, which applies
edge-coloring in scheduling of I/O operations for higher concurrency.
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For industrial applications on service platforms, optimizations on the programming
language or source applications used to be very effective approaches to enhance the
I/O performance through higher parallelism [18].

Optimizations on I/O operations mentioned above concentrate more on optimiza-
tions on noncontiguous I/O operations rather than I/O conflicts among multiple tasks.

2.2 I/O scheduling on SMP/CMP systems

Software scheduling policies are always better choices for mitigating resource conflict,
including I/O contention. Among all I/O schedulers, fairness-oriented I/O scheduler is
the main type that has been thoroughly studied in the past. I/O scheduling policies, such
as noop, deadline and cfq, are among the most commonly used polices in mainstream
OS such as Linux [32]. The work in [32] gives a comparative study on all these
policies. However, fairness-based schedulers often take little or no consideration in
performance. Due to a lack of knowledge in the applications characteristics, shared
resource competition is difficult to resolve with fairness-oriented policies.

The work in [21] is a preliminary work for I/O contentions on large-scale servers.
It focuses on the serious influences from I/O contentions, and proposes a dynamic
scheduling policy. This policy can benefit from dynamic scheduling which combines
proper I/O behavior descriptions and sensitivity estimations. However, it can neither
adapt to the dynamic I/O behavior of co-running applications, nor to the variation of
sensitivities of applications to I/O contentions. In this paper, we further delve into the
root reason for I/O bottlenecks. Based on deep insights into the inefficiencies of current
fairness-based scheduler, WiseThrottling is built on adaptive heuristics. During the
dynamic scheduling, I/O resource descriptions of each application keep on adjusting
according to periodical I/O behaviors. The self-adjustment can make the scheduling
more precise, and reduce unnecessary examinations, which makes it more beneficial.

Disk caching in memory is an effective technique to speed up I/O performance. The
work in [13] demonstrated several I/O optimizations with shared memory for specific
languages, e.g., MPI-IO applications. Since memory-associated I/O optimization will
accelerate the memory consumption, a careful trade-off needs to be made. We have
exposed the risks from this kind of optimizations in Sect. 5.

FIOS in [29] is a flash I/O scheduler that targets to solid-state drives (SSD) and
takes both fairness and performance into consideration. The most important premise
of FIOS is the discrepancy between read time and write time on SSD. Based on this
asymmetry, the scheduler can serve for better performance with a preference to reads
using timeslice-based scheduling. This could do well in some applications that used
to stall by writes.

2.3 I/O scheduling in cluster or datacenter

For distributed environments such as cluster, workstations, etc., I/O bottlenecks are
quite different to and more complicated than on a single server. In this kind of service
environments, in addition to performance issue, resource utilizations and Quality of
Service (QoS) are all key concerns for many scheduler or optimizations.
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When a server owner could not fully exploit I/O resources, some guest jobs are
allowed to make good use of idle cycles in some platforms. However, under such
scenario, it is necessary to protect the performances of the machine owner. I/O throt-
tling is such kind of optimization for higher resource utilizations, which is the most
similar idea to our work from the perspective of coordinating I/O quantities [1,30].
The study in [22] is a very recent work which exploits I/O throttling in MapReduce.
However, it would sacrifice low-QoS tasks to ensure the performance of high-QoS
tasks.

Gang scheduler [25] is a popular timeslice job scheduler for environments of super-
computing center. However, it lacks of strategies for the unbalance between local and
remote file location, which may lead to unsatisfactory performance. On this problem,
IOGS is an enhanced job scheduler based on Gang Scheduler for supercomputing
center [37]. According to the knowledge of file locations, IOGS can schedule the jobs
to the nodes, which have less costs of file access, therefore, upgrade the performance
of user applications.

I/O problems on virtual machines have also become a hot research topic. The work
in [28] focuses on I/O contention among multiple guest domains. The work points
out that the fairness in I/O resource allocation could lead to poor performance due
to the differences in I/O requests. The work in [12] points out a key shortcoming
in the scheduler of current virtual machine monitors (VMM) that may lead to poor
performance because they are agnostic to the communication behavior of applications.
Solutions include techniques such as booking pages for communication, anticipatory
scheduling for sender, etc., which can make VMM more aware of the characteristics
of applications. Flubber [19] is a more recent work for the utilization of I/O devices on
VM environments. The two-level design makes it more efficient for both throughput
and specified latency requirements.

3 Motivation: inefficiencies of the current schedulers
in large-scale servers

I/O bottleneck in any large-scale server closely relates to the inefficiencies of current
OS scheduling on dealing with concurrent I/O demands. These inefficiencies exist not
only in the different fairness-oriented schedulers, but also in other schedulers. The root
reason in these strategies is the ignorance of different sensitivities to I/O contentions
from co-running jobs. To handle all I/O requests from concurrent tasks, the existing
scheduler has to distribute the service timeslices to all co-runners “blindly”. Under
such scenario, the disk arm has to constantly move from one co-runner’s requests to
another. This strategy spends much more time on disk arm moving rather than effective
data accesses, thus underutilizes the I/O bandwidth and degrades the performance of
the tasks.

In this section, we will demonstrate the serious performance degradations from I/O
contentions inside a large-scale server, and then further investigate the role that the
current OS scheduler plays during I/O competitions. Moreover, we will introduce our
quantitative method through which the potential performance influences caused by
I/O contentions can be predicted and evaluated.
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3.1 Platform

The platform employed in our work is a widely used Intel� Xeon� E7-8830 server
in Dawning datacenter. The server has a total of 256 GB main memory.

In modern operating system, for an I/O request, OS scheduler handles it via a two-
step scheduling process (task scheduler and I/O scheduler). Task scheduler directly
affects the co-running tasks, and it also indirectly influences the I/O performance
through interfering with the sequences of I/O requests. I/O scheduler then takes the
charge of issuing I/O requests to I/O devices after task scheduler. Thus, these two
scheduling policies have cooperative contributions to the entire I/O performance.

Many mainstream schedulers are based on fairness policies. For example, in Linux
OS, the default task scheduler is Completely Fair Scheduler (cfs) and the default
I/O scheduler is Completely Fair Queuing (cfq). In this section, we mainly study the
collaborative effects of the default OS scheduler, which represents both cfs and cfq
scheduling policies. The OS in our platform is Linux CentOS 6.3 with kernel 2.6.32.

3.2 Background: performance influences from I/O contentions

In this subsection, we will demonstrate the serious influences from I/O contentions
through a series of experiments on our large-scale CMP server.

3.2.1 Experiments design for I/O contentions

We use a micro multi-threaded benchmark, IO_RANKING, to simulate a task with
specific I/O bandwidth demands. As shown in Fig. 2, the kernel code in IO_RANKING
reads continuous blocks (via fgets) from an external file. To avoid the data caching
effects, the process reads only once from external file. We only show the results with
I/O read operations rather than write operations with fwrite and fflush, since they
exhibit the similar phenomena.

IO_RANKING has two key parameters: (1) Size of Block, representing the size
of data that will be read, and (2) Interval, denoting the time interval between two
successive block readings (via inserting nops). Through varying these two parameters,
I/O operations with different granularities for an IO_RANKING task will be generated.

Fig. 2 Kernel of
IO_RANKING

123



F. Lv et al.

Fig. 3 The process of gradually increasing IO_RANKING tasks in “CMP Stacking” method [21]

However, the contentions and interferences among tasks occur not only on I/O level,
but also in memory system (e.g., LLC, DRAM). Using I/O intensive task only is not
sufficient to fully demonstrate the harm that I/O will bring. We need a method to clearly
distinguish I/O contentions from contentions in other resources. In this paper, we use
“CMP Stacking” [21] to guarantee that all performance influences in our experiments
are mainly from the gradually increase in I/O contentions.

Figure 3 demonstrates the basic idea of “CMP Stacking” method. It uses CMP as the
basic unit for resource allocation and task execution, i.e., adds a new IO_RANKING
task on a new CMP each time during the experiments. Take the K-CMP server in
the figure for example, following the rule of “CMP Stacking”, one IO_RANKING
task runs on one CMP, two tasks on two CMPs, and so on. This strategy includes
two constraints, the confinement and the sustainability, that can make sure that the
performance impacts during co-running mainly come from the global I/O contentions,
not no-chip-network resource contentions. The constraint of confinement satisfies any
resource requirements of a task with the resources inside its own CMP. No cross-CMP
resource requirements will be initiated, and no on-chip-network resources inside a
CMP will be contended between any of the two co-runners. The constraint of sus-
tainability can ensure that the confinement will last for the whole co-running process.
With these two constraints, we can attribute the major performance impacts to I/O
contentions during the process of “CMP Stacking”. More details about this method
can be found in [21].

Following the steps of “CMP Stacking” method [21], multiple IO_RANKING tasks
are grouped together to simulate concurrent I/O contentions. By gradually increasing
the number of concurrent IO_RANKING tasks, i.e., from 1 task to 8 tasks on a 8-CMP
server, the performance impacts from global I/O contentions are able to be observed
clearly through the variation of averaged task performance.

3.2.2 Impacts from I/O contentions

Figure 4 is from our previous work [21]. It illustrates the correlation between different
I/O bandwidth demands and the corresponding performance degradations caused by
I/O contentions. There are 12 groups of experiments represented by 12 curves. Each
curve tracks the averaged performance degradation for a task during k-CMP co-running
experiments (x-axis represents the number of k). Here, k-CMP is performed with k
concurrent jobs ranging from 1 to 8 and each job is mapped to a separate CMP.
12 curves are experimented with 12 categories of tasks, which have different I/O
bandwidth demands ranging from 1.5 MB/s per CMP to 26.4 MB/s per CMP. Data in
each curve denote the degradation trends during the increasing number of concurrent
I/O tasks, which is made up of totally duplicated tasks. Apparently, the performance
degradation is becoming more and more obvious when more tasks take part in the co-
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Fig. 4 Average performance degradation while increasing concurrent IO_RANKING tasks [21]

Fig. 5 Performance contrast between the four I/O schedulers in Linux system

running. Particularly, for the tasks with average I/O bandwidth of 24.3 and 26.4 MB/s,
the degradations are more significant than those with lower bandwidth demands.

The experimental results exhibit that severe I/O contentions can damage the co-
running performance eventually, and we come up with the following conclusions:

• I/O bandwidth demands: the performance in co-running cases correlates closely to
the tasks’ average I/O demands. The more the averaged I/O bandwidth demands
are, the more serious the system’s performance degradations will be.

• Number of concurrent tasks: the co-running performance correlates closely to
the number of co-runner tasks. The more the co-runners are, the more severe the
system’s performance slowdowns will be.

3.2.3 Discussion for the difference between I/O schedulers

Not only the default scheduler, but also other schedulers may lead to performance
degradation. In Fig. 5, we compare four I/O schedulers [noop, deadline, anticipatory
and cfq (default)] [32] in current Linux OS. Using the method in [21], the experi-
mental results show that with the increasing number of concurrent tasks, all the four
schedulers exhibit the same performance degradation trend. cfq performs a little bet-
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Table 1 Statistic entries with iostat

Entry Description

rMB/s The number of megabytes read from the device per second

wMB/s The number of megabytes written to the device per second

await The average time (in ms) for I/O requests issued to the device to be served

svctm The average service time (in ms) for I/O requests that are issued to the device

%util Percentage of CPU time during which I/O requests are issued to the device (bandwidth
utilization for the device)

ter than others, in the cases where the concurrent IO_RANKING is less than 5. In
our work, we use default I/O scheduler, cfq scheduler, in the paper, as it is typical
and widely used in common productive environments. In later subsections, we mainly
study the collaborative effects of the default OS scheduler, which represents both cfs
task scheduler and the cfq I/O scheduler. We will further investigate the root reason
why the default scheduler hurts the system performance.

3.3 Inefficiencies of the OS scheduler

The design of the existing OS scheduler cannot handle I/O contentions effectively,
and thus hurts the overall system performance in many cases. This will lead to (1)
low resource utilization and (2) high I/O latencies, and OS monitoring mechanism
(e.g., iostat) can get the details of them. In Table 1, we list five entries adopted in
our analyses. In our experiments, we sample these entries with iostat at a fixed time
interval specified by the user (1 s at least).

3.3.1 Low resource utilization: low bandwidth utilization vs high device utilizations

The first inefficiency of the default OS scheduler is that it will lead to improper resource
utilization when coping with multiple concurrent competitors. This is because, under
the guidance of fairness-oriented policies, the current scheduler distributes the OS
serving timeslices equally among tasks of the same priority, resulting in hopping of
I/O devices, which not only destroys the original data continuity of file operations for
a task, but also fast saturates I/O devices. We demonstrate this defect by a comparison
between the real bandwidth utilization and the I/O device utilization. We use three
entries, rMB/s, wMB/s and %util in Table 1, to generate the bandwidth utilization
and the device utilization.

Figure 6 shows the experimental results in terms of IO_RANKING with 1.5, 5.1 and
26.4 MB/s per CMP, respectively. Data in the figure with each kind of I/O bandwidth
demands are composed of two curves: the bandwidth utilization curve (the dotted
curve denoted by bw) and the I/O device utilization curve (the solid curve denoted by
util). Notably, no matter how many concurrent I/O tasks are running, the gap between
the bandwidth utilization and the I/O device utilization always exists, indicating that
bandwidth is not fully exploited and in “hungry” in common cases though the I/O
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Fig. 6 Contrasts between the bandwidth utilization and the device utilization

Fig. 7 Components of I/O costs [21]

devices are “busy”. We denote the gap as bandwidth-device gap (BD-gap). BD-gap
becomes more significant with the number of co-runner tasks increases. The reason is
when more and more concurrent tasks begin to compete with each other, I/O device
will approach to saturation rapidly, while only small part of the system bandwidth can
be utilized efficiently during this process. Another key point, which should be noticed,
is that with the default OS scheduling policy, the system’s peak I/O bandwidth (about
90 MB/s) is very hard to be fully exploited under serious I/O contentions. To sum
up, we come to the conclusion that improper I/O device service policy leads to low
bandwidth utilization, and this is due to inefficiency of the default OS scheduler.

3.3.2 High I/O costs: high software costs vs low hardware costs

Furthermore, the inefficiency of the default OS scheduler can be revealed through
analyses upon the high I/O costs during I/O contentions. For each I/O request to
local disk, the latency can be divided into two major portions (illuminated in Fig. 7
[21]): the software service time in OS layer, and the hard disk service time. Generally
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Fig. 8 Correlation between service time and simultaneous I/O quantities. Unsaturation region refers to the
left of the blue “watershed” line where the system I/O bandwidth keeps increasing. Saturation region refers
to the right of the “watershed” where the system I/O bandwidth reaches the peak and stops increasing (color
figure online)

speaking, in our investigation, we find that the default OS scheduler will lead to
very high software service time, which plays dominating role for the overall system
performance. We will explain the inefficiency through contrasts between these two
portions during co-running.

We use soft_service_time to stand for the software portion in I/O costs, which
is mainly composed of the waiting time of an I/O request in I/O queues and the
coordination time by the software scheduler.

We use hard_service_time to represent the hardware costs in I/O costs, which is
the actual service time of an I/O request by the I/O device.

Therefore, we can calculate I/O latency with software service time and hard disk
service time as in Eq. (1):

I/O__latency = so f t__service_time + hard__service_t ime (1)

We use two entries from iostat to analyze the variation of the two portions of I/O costs.
The entry await in the report generated by iostat includes both the software service
time and the hard disk service time. The entry svctm in the report shows the disk
service time. Thus, the software service time can be deduced from these two values.
The overhead that contributes to I/O impacts can be revealed via the contrasts between
these two components of I/O latencies for each device operation.

The contrasts between the software portion and the hardware portion are per-
formed through more experiments with IO_RANKING tasks, named expanded
IO_RANKING experiments. Here, we generate more than 17 groups of simultaneous
I/O requests through varying parameters in IO_RANKING to study the variation
of different portions of the I/O costs. Average I/O demands of these tasks range
from fine-grain I/O operations (about 1 MB/s) to coarse-grain I/O operations (8
GB/s).

In Fig. 8, our experimental results exhibit that the software service time (blue
curve) always dominates I/O latency, and it keeps increasing with the growth of
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Fig. 9 Correlation between software_service_time and the performance degradation. They have similar
trends. Higher software_service_time will lead to more severe performance degradation

simultaneous I/O requests (as the x-axis denotes). But, on the contrast, the hard
disk service time (green curve) does not change obviously all the time. Thus, we
conclude that I/O_latency approximates soft_service_time. As we analyzed in the
previous section, the reason for the high software service time lies in that the cur-
rent fairness-oriented scheduler is ignorant of different sensitivities to I/O contentions
from co-running jobs. The existing scheduler distributes the service timeslices to
all co-runners fairly and the disk arm has to constantly move from one co-runner’s
requests to another’s. In general, this will destroy the original continuity of a task’s
file operation, lengthen the service time, and finally degrade the performance of the
tasks severely.

Moreover, the gap between the software serve time curve and the hard disk service
time curve becomes more and more significant and un-negligible with the users’ I/O
requests increase. We call the gap as service time gap (ST-gap). ST-gap begins even in
the unsaturation region of the system’s peak I/O bandwidth (the left of the blue “water-
shed” in the figure). Figure 8 shows when the overall I/O demands from concurrent
tasks just reach 44 % of the system’s peak bandwidth (40 MB/s out of 90 MB/s in
the figure), ST-gap has already become obvious. It also illustrates that ST-gap is more
obvious in I/O bandwidth saturation region than in unsaturation region, manifesting
that the default OS scheduling policy does not work well under I/O intensive condition
(even in the unsaturation region), and it becomes more severe when the system I/O
bandwidth achieves its peak (saturation region). Apparently, the system I/O bandwidth
could not be fully exploited via the default OS scheduler.

Additionally, our study uncovers a correlation between the software service time and
the corresponding performance degradation caused by I/O contentions. As shown in
Fig. 9, they appear the same trend, indicating that the higher software service time will
incur more severe performance degradation. Therefore, these observations motivate us
that when we use a “wise” scheduling policy that aims to reduce the software service
time, we will improve the overall system performance.
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Fig. 10 Vector Points (color figure online)

3.4 Two metrics on potential performance impacts from I/O contentions

Above investigations show that the bandwidth is not the fundamental reason that leads
to the degradation of system performance. So we need other metrics to illustrate the
potential I/O contentions and the corresponding impacts.

3.4.1 Vector Points

The first metric is based on the two findings that are discussed in Sect. 3.2.2. They
indicate that the system performance depends on two key features in co-running cases,
not only the average I/O bandwidth requirements (abbr. A-BW), but also the number
of co-runners (abbr. N-CO). We use a Vector Point <A-BW, N-CO> to describe
these cooperative effects on the co-running performance. We can obtain Vector Points
through experiments with IO_RANKING tasks. More details about the fine-grained
experiments can be referred in Sect. 3.2.2.

Vector Points are empirical values which are picked out in two steps under a per-
formance threshold. As the black horizontal line shows in Fig. 10, the threshold is the
potential performance degradation which is allowed by users. Under this threshold
line, the first step for Vector Points is to select a point (denoted with blue points)
which has an average bandwidth demands as high as possible for each number on the
x-axis. Those points, Vector Points, denote that for co-running tasks with average I/O
demands of no more than A-BW, only when the number of co-runners keeps below the
value of N-CO, the co-running execution can be guaranteed, and otherwise I/O con-
tentions will hurt the co-running performance. For example, Vector Point <24.3, 2>
denotes that an IO_RANKING task with averaged demands of no less than 24.3 MB/s
may suffer degradation when only two such kind of co-runners are launched (in an
8-socket, 64-core server).

However, in the 12 groups of experiments, neighbor numbers on the x-axis always
have very similar Vector Points. The second step is to coalesce those points into one.
Since all these Vector Points are used to guide scheduling, coalescing is good for
reducing the scheduling overheads. In the figure, the Vector Points on Number 4 and

123



WiseThrottling: a new asynchronous task scheduler...

Number 6 (denoted in blue rings) can be merged with Number 5 and Number 7 (blue
points), respectively.

All Vector Points constitute a blue curve in Fig. 10. Separated by this curve, two
different regions can be observed which are the grey region (below the curve) and the
white region. In the grey region, all I/O demands from the co-runners can be satisfied
within the user’s performance demands. On the contrary, for co-running tasks with a
certain I/O bandwidth requirements in the white region, once the co-runner exceeds a
degree (e.g., 3 tasks for the task of 24.3 MB/s), obvious performance losses will occur.
Therefore, these Vector Points can be used in the scheduler for judging potential
performance losses. In our future work, we will develop automatic models for Vector
Point selection so that they can be more precise.

3.4.2 BW_Ratio: ratio of the total I/O demands

Another metric used to detect potential performance losses is the ratio of the total
I/O demands to the system’s peak I/O bandwidth. Under the circumstance of I/O con-
tentions, performance losses always happen when the total I/O demands accumulate
to specific degree, e.g., 50 % of the system’s peak I/O bandwidth (about 90 MB/s
in our work). We call this ratio BW_Ratio. Take the 26.4 MB/s task in Fig. 10 as
example, 50 % performance degradation first appear when there are only 2 co-runners
in the system. At that time, the total I/O demands are 52.8 MB/s, which is only about
58.7 % of the peak I/O bandwidth. Therefore, BW_Ratio is able to work as a metric
for performance losses predication.

In summary, we are motivated to optimize I/O contentions from the following
perspectives:

1. The current schedulers are the ultimate bottleneck for co-running performance
degradations. They will result in two gaps, BD-gap and ST-gap, which stand for two
inefficiencies, low bandwidth utilization and unreasonable high software service
time.

2. The system I/O bandwidth is not the key factor for co-running performance. On
the contrary, two metrics are effective to predict the potential performance losses
under I/O competitions of concurrent execution. An efficient and effective “wise”
task scheduling policy is necessary for large-scale servers, which regulates I/O
contentions and thus improve the overall system performance.

4 WiseThrottling: an asynchronous scheduler for I/O contentions

WiseThrottling achieves wise scheduling through taking different I/O characteris-
tics and sensitivities of co-runners into its consideration. To depict and mitigate
I/O conflicts effectively, WiseThrottling is designed to provide: (1) an adaptive I/O
resource description for depicting periodical I/O behaviors of cluster applications. (2)
an asynchronous scheduling policy, which supervises I/O contentions according to the
individual I/O description of each application. With these measures, WiseThrottling
can detect I/O contentions. Moreover, it applies to both inter-task conflicts and intra-
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task conflicts, which further improves the overall resources utilization through saving
the whole serving time.

The following subsections show ideas in WiseThrottling mechanism. Section 4.1
introduces the framework of WiseThrottling. Section 4.2 discusses the core idea of
WiseThrottling about how to be more sensitive to the individual I/O characteristics of
each task. The detailed design for the individual I/O resource description will be stated
in this subsection. Section 4.3 presents the step-by-step design of WiseThrottling.
Section 4.4 gives an example for the process of WiseThrottling.

4.1 Overview of WiseThrottling’s framework

Large-scale servers are quite different from small-scale ones in terms of the capa-
bility of supporting more co-runners that exhibit diverse I/O features. This leads to
two issues: (1) How to depict I/O features for every task? (2) How to detect I/O con-
flicts accurately without incurring high overhead? Our WiseThrottling depends on the
solution of them.

To fulfill the above requirements, we use a two-dimensional I/O description
<dtimeslice, sensitivity> in the implementation of WiseThrottling. In this description,
dtimeslice is to describe the periodical I/O behaviors, while sensitivity is to reflect the
potential performance vulnerability of a task in the cases of I/O contentions. Values
of the description for each task are not immutable. On the contrary, to avoid unneces-
sary inspections and to reduce scheduling overhead, the properties are designed to be
self-adaptive during the real-time scheduling process. Hence, WiseThrottling has two
key modules (static and dynamic), which are responsible for the initial values and the
adaptive values, respectively.

Figure 11 displays the general scheme of WiseThrottling. As mentioned above, it
relies on a two-dimensional I/O description <dtimeslice, sensitivity> for both I/O
contention detection and conflicts regulation. WiseThrottling is composed of two

Fig. 11 Framework of WiseThrottling
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Fig. 12 The dynamic module is registered as an exception handler for the timer interrupt

modules, i.e., the static module and the dynamic module. Static module creates a
two-dimensional I/O vector description for each task off-line. The dynamic module
plays a more important role to deal with real-time I/O conflicts on-the-fly. It uses a
real-time asynchronous scheduling, i.e., to detect and mitigate I/O conflicts under the
guidance of the each task’s individual I/O description during co-running. The dynamic
module is designed as a user-level scheduler triggered by the timer signal at a specified
time interval.

Static module: Because WiseThrottling is based on I/O descriptions, the major
function of the static module is to generate initial I/O descriptions for every task.
The initialization includes two processes: Initial_Dtimeslice and Initial_Sensitivity
in Fig. 11. More details about the algorithms will be introduced in Sect. 4.2. These
initial values will be used as the input for the dynamic module. In WiseThrottling,
resource descriptions for all co-runners can be either the same or different. To reduce
overheads, the static module works in off-line way.

Dynamic module: Besides the adaptive two-dimensional I/O descriptions, another
feature of WiseThrottling is that it uses an asynchronous scheduling policy to per-
form its scheduling, i.e., to schedule co-running tasks according to their individual
I/O properties. The dynamic module in Fig. 11 is the core part to implement the
asynchronous scheduling policy. It is responsible for creating the candidate queue,
coordinating I/O contentions, and adjusting I/O descriptions adaptively according to
the real-time I/O behaviors for co-runners. These steps are described with algorithms of
Candidate_Queue_Setup, Coordination, SelfTuning_Adaptive_Dtimeslice, respec-
tively, as the pseudo codes shown in Fig. 12. More details about the dynamic module
will be introduced in Sect. 4.3.2.

The dynamic module is registered as an exception handler for the timer interrupt,
and is triggered periodically by the timer interrupt. The pseudo-code of Excep-
tion_Handler_of_Timer_Signal in Fig. 13 demonstrates the trigger process. Each
time when OS receives a timer signal at a specified interval, namedCHECK_INTERVAL
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Fig. 13 The algorithm of the dynamic module

(at least 1 s in our work), the exception handler will transfer the task management
control to the dynamic module, named Dynamic_Module. It should be noticed that
CHECK_INTERVAL only specifies fixed interval to start scheduling routines without
imposing any unnecessary scheduling. After the routine of the dynamic module is
initiated, it will only examine the co-runners which are I/O busy at the moment. Using
the information of tasks’ I/O descriptions, the dynamic module starts to coordinate
I/O contentions, and adjusts I/O descriptions according to the current I/O behaviors
for co-runners under examination via I/O descriptions at the moment. The descrip-
tions are useful in depiction for I/O behaviors and regulation for I/O conflicts during
co-running process. After WiseThrottling finishes its dynamic scheduling, the OS task
scheduler and the OS default I/O scheduler will take back the charge once again.

As a standalone scheduling policy, WiseThrottling can be turned on or off according
to users’ demands. Moreover, these modules are portable for other OS after a few
platform-dependent modifications.

4.2 Adaptive two-dimensional I/O resource description

4.2.1 Core idea about I/O conflict depiction

Applications often exhibit different, diverse and periodical resource behaviors. Many
researches have devoted to this topic and proposed many efficient methods for periodi-
cal behaviors descriptions [9,10,16]. Timeslice [32] and Resource description [24] are
common measures for periodical behavior depictions that scheduling policies usually
use. However, constant timeslice [21,32] is less effective for large-scale servers with
many co-runners that exhibit complicated periodical behaviors, and further leads to
un-negligible scheduling overhead.

Under the scenario of co-running, the depictions of periodical behaviors should
cover at least two important aspects to be more accurately and efficiently. First, the
description should reflect the periodical behaviors for resource demands. The second
is that the description should reflect the periodical performance effects during resource
contentions.
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Fig. 14 A sample of periodical I/O behaviors. aA sample of periodical I/O behaviors.bAmplified fragment
of the samples

4.2.1.1 Periodical behaviors for resource demands (dtimeslice) Figure 14a demon-
strates the periodical behaviors for BFS.s22e16, which are sampled with iostat at
interval of 1 s. More details about BFS.s22e16 are introduced in Sect. 5.1.2. The
fragment of the samples in Fig. 14b shows that the task’s execution process can be
described with two phases: skip phase and scan phase.

A skip phase is composed of some continuous intervals in which the task keeps
to be I/O free. Conversely, a scan phase is composed of some continuous intervals in
which the task keeps on I/O busy.

However, it is not a desirable method to record all these phases to guide the dynamic
scheduling. Especially, descriptions for independent execution and co-running execu-
tion are not the same at all. Therefore, WiseThrottling designs an adaptive property
described with dtimeslice for the depiction of a task’s periodical behaviors. It has an
initial value and an adaptive value. The initial value of dtimeslice can be obtained
through samples and analyses off-line, such as sampling with iostat (or periodical
reading the system I/O files under /proc/pid/io). Then, this value keeps on self-tuning
according to the real-time I/O behaviors during the dynamic execution.

4.2.1.2 Periodical performance during I/O contentions (sensitivity) Intuitively, differ-
ent task exhibits different I/O behaviors and different sensitivity to I/O competitions.
Our investigations in Sect. 3.2.2 have shown this phenomenon. An important conclu-
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Fig. 15 Relation between I/O bandwidth demands and the sensitivity to I/O contentions for a task.
a Sensitivity of Kmeans. b Sensitivity of BFS.s22e16 (color figure online)

sion from Sect. 3.2.2 is that tasks with higher I/O demands will suffer more significant
performance degradation from I/O contentions. The following experiments are used
to further disclose the relation between the average bandwidth demands and the sen-
sitivity to I/O contentions in co-running cases.

Some studies adopt micro-benchmark to classify the priorities of applications [5]. In
our work, we use expanded IO_RANKING experiments (as in Sect. 3.3.2) as detectors
for the combined effects of a task’s whole execution. In the experiments, we vary the
number of nops and the number of CMPs to generate more IO_RANKING (as in Fig. 2)
tasks. These IO_RANKING tasks in the expanded IO_RANKING experiments have
different I/O bandwidth demands ranging from 1 to 1.3 GB/s. Through concurrent
executions of a user task and other tasks that exhibit diverse I/O behaviors, we can
observe the performance changes resulted from I/O competitions.

In Fig. 15, each figure demonstrates the co-running performance degradation of a
user application in co-running with IO_RANKING tasks. The two figures in Fig. 15
also show a sharp contrast between the two cases. In Fig. 15a, the co-running perfor-
mance degradation curve (blue) indicates that Kmeans is much easier to be interfered
in I/O competition conditions, and thus suffers a 40 % performance lost in most cases.
On the contrary, in Fig. 15b, as a result of memory optimization, I/O operations of
BFS are greatly reduced. Therefore, the performance degradation curve of BFS (blue)
shows no significant performance loss during the co-running execution. The different
performances relate closely to the diversified I/O demands of these two applications.
Kmeans has relatively higher I/O demands (about 37 MB/s) and BFS has low I/O
demands (about 6 MB/s). The sort of tasks that have relatively higher I/O demands,
e.g., Kmeans, is more sensitive to I/O contentions than that with lower I/O demands,
and we conclude that the more the I/O demands are, the more performance lost the
application has to suffer in co-running cases.

The above observations and the observations in Sect. 3.2.2 inspire us that, to mitigate
I/O contentions in large-scale platforms, the sensitivity to I/O contention is a key factor
which should not be neglected. Therefore, WiseThrottling uses an adaptive property
described with sensitivity for the depiction of a task’s sensitivity to I/O contentions.
More details of the design about dtimeslice and sensitivity will be discussed in Sect.
4.2.2.
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4.2.2 Two-dimensional I/O depiction

4.2.2.1 dtimeslice We design dtimeslice to indicate the periodical I/O behaviors for a
task. WiseThrottling uses dtimeslice in the dynamic module to guide the inspection
intervals for a task and to regulate I/O conflicts. As mentioned before, dtimeslice has
an initial value and an adaptive value. The initial value is to outline the general I/O
behavior statically, while the adaptive value is to describe periodical I/O behaviors
more appropriately. Therefore, the major deference between these two values is that
the initial value is calculated with the static information while the adaptive value
is adjusted according to more real-time information within a short period. These two
values cooperate closely to realize a wise scheduling. Using dtimeslice, the scheduling
can be more efficient in dealing with contention cases and skip these intervals without
I/O requests (the skip phase in Fig. 14b).

Initial value of dtimeslice

As the investigation in Sect. 4.2.1, considering the scan phases (Fig. 14b) that are busy
with I/O, we set the initial value of dtimeslice as in Eq. (2).

dtimesliceinitial =
(∑SCAN_IDX

i=0 scani

SCAN_IDX

)
/I O_BUSY_THRESHOLD (2)

In this equation, for a task, the scani stands for the average I/O demands in the i th
scan phase. SCAN_IDX is used to represent the number of the scan phase. Since I/O
operations are much longer than memory operations, the interval for scheduling should
not be so fine-grained in case that I/O operations are always interrupted before they
have enough time to complete. Thus, dtimeslice for the task is set with a ratio of the
average I/O bandwidth in scan phases, and IO_BUSY_THRESHOLE (It is an empirical
value set according to specific hardware I/O characteristics). The higher the average
I/O bandwidth, the longer is the inspection interval.

Figure 16a shows the detailed algorithm upon the initialization process of dtimes-
lice through Initial_Dtimeslice in the static module. For any task (denoted as task[i]),
the module collects the number of the scan phases in I/O log file (generated by
iostat). The entire process is off-line, and it includes five steps. (1) Deciding the
current I/O status according to the number of I/O requests. We use a tunable constant
IO_BUSY_THRESHOLD to identify busy status. In steps (2) to (4), our mechanism
put the current state into appropriate records. In (2), if the current interval starts a new
scan phase, it will be counted in a new scan phase record. In (3), if a scan phase is
completed, the average I/O quantities for the phase will be calculated. In (4), we just
increase the number of corresponding record if the current status is a continuation
of the previous scan interval. In (5), finally, we calculate the dtimeslice with all the
collected information.

Adaptive value of dtimeslice

Applications often exhibit irregular I/O behaviors, e.g., intensive I/O reading at the
initialization and sparse I/O operations at the middle. To adapt to the variation of I/O
behaviors,dtimeslicewill increase or decrease accordingly during the entire scheduling
processing in dynamic module.
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Fig. 16 The initialization and the adaptive tuning algorithms for dtimeslice. a Initialization algorithm for
dtimeslice in the static module. b The adaptive self-adjustment algorithm for dtimeslice in the dynamic
module
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Fig. 16 continued

In Fig. 16b, SelfTuning_Adaptive_Dtimeslice in the dynamic module deals with
the adaptive self-tuning process. As in line 19, we use TURABLE as a threshold to
determine the variation ofdtimeslice.TURABLEext stands for the maximum successive
intervals that allow none I/O operations for a task. Once a task has no I/O demands
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Fig. 17 An example for I/O description

and has not been regulated for successive TU RABLEext intervals, its dtimeslice will
enlarge X times (e.g., 2 times in our work) as in line 24. We refer to this process
as extension. On the contrary, if a task keeps on I/O intensive for TU RABLEsht

intervals, it dtimeslice will decrease and finally return to the initialization value, as in
line 34. We refer to this process as shortening. The values of TURABLE in extension
and shortening process, denoted with TU RABLEext and TU RABLEsht , are not
necessarily the same. This variation either leads to a sparse scheduling interval or an
intensive scheduling interval for a task, which can make a better trade-off between
lower scheduling overheads and more accurate scheduling automatically.

4.2.2.2 Sensitivity Sensitivity describes a task’s performance vulnerability to I/O
contentions. The key issue is to estimate the potential performance influences from
I/O contentions for a task. Since this property only plays a role when mitigating
conflicts in real time, we only focus on the adaptive self-tuning process for it. The
Initial_Sensitivity in Fig. 11 in the static module initializes sensitivity of a task to be
zero.
Adaptive value of sensitivity
The adaptive value of sensitivity for a task will be updated in terms of I/O demands at
different intervals through SelfTuning_Adaptive_Sensitivity. As shown in Fig. 18a,
this interface is embedded in the first step of Candidate_Queue_Setup in the dynamic
module. In practice, higher sensitive tasks will be optimized firstly.

4.2.2.3 An example for I/O description In this subsection, we will illustrate how to
determine the I/O descriptions for a task. Figure 17 demonstrates the process from
initial value to the adaptive value for x264-8.native (please refer to Sect. 5.1.2 for
more details about the applications). The whole execution takes about 55 s, as the
x-axis denotes (55 intervals). The y-axis shows the corresponding I/O demands at
each interval. Comment boxes are used to show the adaptive tuning process for I/O
descriptions.

In the figure, the task goes through three successive periods, which are the scan
period, the extension period and the shortening period. As the comment box of <
1, 0 > at timeslice 1 shows, the static module initializes the property of dtimeslice
to 1, and sensitivity to 0. From the first timeslice, the task enters the scan period
and it keeps I/O busy from timeslice 1 to timeslice 15. In this period, dtimeslice
remains intact. Then, the task keeps I/O idle, and thus enters the extension period
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from timeslice 15 to timeslice 35 as the figure shows. During this period, when the
task has accumulated TURABLEext (TURABLEext = 10) continuous idle intervals
from timeslice 15, the dtimeslice is enlarged X (here X is 2) times at timeslice 24, and
turns into 2. After that, x264 will be inspected every 2 s. Finally, x264 becomes I/O
busy once again with file writeback operation from timeslice 36. From that point on,
dtimelsice will go through a shortening period. After 5 busy intervals are accumulated
(here, TU RABLEsht = 5), dtimeslicewill shorten X times at timeslice 44, and return
back to the initial value of 1, while sensitivity keeps changing with the real-time I/O
quantities.

To sum up, WiseThrottling uses a two-dimensional I/O description for each task.
Two properties (dtimeslice and sensitivity) in the I/O resource description need to be
initialized in the static module of WiseThrottling. These values are useful for guiding
the scheduling at the first beginning of the later dynamic process. After that, these
properties will be maintained dynamically according to the real-time I/O demands in
the dynamic modules of WiseThrottling.

4.3 WiseThrottling scheduling policy

WiseThrottling is composed of two modules, the off-line static module and the dynamic
module. These two modules work collaboratively to make the scheduling more effi-
ciently and accurately.

4.3.1 Static module

As shown in Fig. 11, the major function of the static module is to collect I/O behaviors
of user tasks and output the I/O resource description vectors for them in an off-line
way. It includes two algorithms to initialize the two properties in I/O descriptions.
More details about the initialization are presented in Sect. 4.2.2. The output resource
descriptions for tasks will work as inputs of the dynamic module of WiseThrottling.

4.3.2 Dynamic module

The dynamic module plays a more important role for WiseThrottling. It implements the
asynchronous scheduling policy to reduce I/O conflicts, and adjusts I/O descriptions
during the real-time scheduling.

It should be pointed out that not all tasks could be updated and regulated in each
interval. To control the software overhead, the dynamic module only inspects tasks
that are quantified with regard to dtimeslice because only these tasks will result in I/O
conflicts and should be regulated. This is the principle of the dynamic module.

The dynamic module undergoes three stages to fulfill its duty. Figure 18 illustrates
the three major algorithms in the dynamic module.

Candidate_Queue_Setup: The first stage in the dynamic module is to create a can-
didate queue. As illustrated in Fig. 18a, I/O busy tasks at the current interval will enter
a candidate queue. Here the busy status is determined by IO_BUSY_THRESHOLD (as
introduced in Sect. 4.2.2.1). With the real-time I/O information, the property of sensi-
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Fig. 18 The dynamic module of WiseThrottling. a Candidate_Queue_Setup is to put qualified
tasks in the candidate queue. b Coordination is to detect and regulate I/O contentions. c SelfTun-
ing_Adaptive_Dtimeslice is to adjust dtimeslice for all tasks according to their real-time I/O demands
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tivity can be updated through SelfTuning_Adaptive_Sensitivity. Tasks in the candidate
queue are in descending order in terms of sensitivities. No matter for multi-threaded
tasks or multi-programmed tasks, children will have their own I/O information. This
makes it possible to mitigate both inter-task and intra-task conflicts in the following
steps.

Coordination: After the candidate queue is updated, Coordination in the dynamic
module begins to regulate I/O conflicts in the following steps.

Firstly, the algorithm needs to inspect the current conflicts and decide on whether
regulation is needed for the current interval. Two metrics in Sect. 3.4 are used to
determine the necessity of the scheduling:

(a) BW_Ratio: Our analyses in Sect. 3.4.2 show that once the total I/O demands
approach around 50 % during multi-task competitions, potential performance
degradation will occur. We use BW_Ratio of 50 % in our work as a heuristics for
scheduling. It is an empirical value.

(b) Vector Points: Besides the condition of BW_Ratio, we use Vector Points as sub-
sidiary conditions to predict potential conflicts. We obtain the Vector Points via
the fine-grain experiments with IO_RANKING (as in Sect. 3.2.1). Each Vec-
tor Point corresponds to a condition examination. The dynamic module will go
through all condition examinations one by one in order to detect the potential
performance influences during competitions.

Secondly, two types of decisions will be made in this procedure, suspension and
resumption. As in the left branch of Fig. 18b, after conflict detections, if the BW_Ratio
or one of the condition examinations fails to be satisfied, the dynamic module will keep
on suspending some tasks or some threads of a task in one or more CMP. On the con-
trary, as in the right branch of Fig. 18b, if the current I/O demands are below BW_Ratio,
the dynamic module will resume some suspended tasks. Those who have been sus-
pended for a longer time are preferred during the process of resumption. In case of
the oversubscription of I/O bandwidth, we use a tunable constant, RESUME_GROUP,
e.g., 1/4 of the co-running tasks, to control the number of the tasks that are resumed
in the interval.

In summary, the dynamic module checks the current I/O contentions, and makes
decisions to regulate I/O conflicts. If the contentions are heavy, some tasks will be sus-
pended. On the other hand, if the resource contentions are not severe, some suspended
tasks will be resumed.

4.4 An instance of WiseThrottling in reality

Figure 19 uses a four-task workload as an example to illustrate the routine behind
WiseThrottling in detail. In the figure, Task0 and Task1 are single-threaded. Task2 and
Task3 are dual-threaded. Each thread is mapped to a specific core, and there is no
core-sharing between any of the two tasks. All tasks except Task3 are I/O intensive
applications. Task3 is less I/O intensive. We use the four Vector Points in Fig. 10 and
BW_Ratio of 50 % to set up the four examination windows in our example.

The initialization values of the I/O resource description are given in the left of the
figure. The x-axis in the figure denotes the timeslice during execution. The comment
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Fig. 19 WiseThrottling scheduling example. Task0, Task1, Task2 and Task3 are co-located on different
cores in CMP0-CMP2. The two-dimensional resource description for each task is<dtimeslice, sensitivity>.
The comment boxes in different color at the bottom illustrate timeslice when a task should be checked
(in short, Ti ), which are indicated by the tasks’ adaptive dtimeslice. a The asynchronous scheduling of
WiseThrottling. b The adaptive self-adjustment of the I/O description (color figure online)

boxes at the bottom represent the qualified interval (in short, Ti ) for a task which
should be examined. These are specified by the initial values of tasks’ dtimeslice.
The initial dtimeslice for each task specifies that the qualified inspection timeslice for
Task0, Task1 is on 0, 2, 4, 6, and for Task2 is on 0, 3, 6. Guided by these non-uniform
values, WiseThrottling will initiate asynchronous scheduling and examine a task at its
specified intervals. These dtimeslice values keep on self-adjusting during the dynamic
running, which are reflected through the variation of values in the rectangle for each
task.

Figure 19a illustrates the Candidate_Queue_Setup and Coordination steps of the
asynchronous scheduling. In the figure, at timeslice 0, only three tasks, Task0, Task1
and Task2, are qualified for the candidates because resource description indicates that
timeslice 0 is a common check point for all of them. WiseThrottling only checks these
3 tasks and the dynamic module fails to satisfy both the BW_Ratio and the condition
examinations for Vector Point <24.3, 2>. Thus, WiseThrottling decides to suspend
Task0 due to its higher sensitivity (resource description shows Task0’s sensitivity at this
interval is 30), and let Task1 and Task2 continue executing. At timeslice 2, WiseThrot-
tling only checks Task1 (because resource description indicates that timeslice 2 is a
check point for Task0 and Task1). Since there is only one task, Task1, in the candidate
queue, WiseThrottling does nothing and Task1 need not be suspended. At timeslice 3,
only Task2 is checked (because resource description indicates timeslice 3 is the check
point for it). WiseThrottling is aware of that BW_Ratio still cannot be catered after
Task0 is suspended. Therefore, one thread of Task2 is suspended by WiseThrottling.
At this moment, Task0 and one thread of Task2 are both suspended, and Task1 and the
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other thread of Task2 are left running. At timeslice 4, Task1 is checked since Task1
is still in suspension. WiseThrottling is aware of that the two conflict detections are
luckily fulfilled, so it resumes Task0 at this moment (because Task0 is the longest one
which has been suspended). At timeslice 6, one of the threads of Task2 is resumed by
WiseThrottling finally. The above steps show the general process of WiseThrottling,
and the essence of the whole process is the two-dimensional resource description,
which obtained from static module.

Figure 19b illustrates the step of SelfTuning_Adaptive_Dtimeslice. In the figure,
we use Task3 to demonstrate how dtimeslice adapts to the I/O behaviors dynamically.
For brevity, we set TURABLEext to 2 and X to 2. At timeslice 0, WiseThrottling checks
Task3 (because its resource description specifies the initialization value of dtimeslice
is 1). Since it has no I/O demands, the scheduler does nothing and just moves on. At
timeslice 1, WiseThrottling still checks Task3, and finds that it still has no I/O demands.
At this moment, Task3 has accumulated 2 successive idle intervals and reaches the
upper bound specified by TURABLEext value. Its dtimeslice enlarges 2 times and is
updated to 2 due to our adaptive strategy. Thus, the next check points for Task3 are
timeslice 2 and 4. From timeslice 2 to timeslice 4, Task3accumulates 2 successive
idle intervals once again, and its dtimeslice will be extended to 4. With this automatic
tuning process, the dynamic module will skip other intervals to reduce the overhead
of unnecessary examination for Task3.

5 Experiments and evaluations

In this section, we evaluate the performance of WiseThrottling from two aspects:

(1) We evaluate and examine the effectiveness of WiseThrottling via two sorts of
typical services:

• Similar-pattern service: This kind of service is made up of duplicated applications,
while either same or different data input sets.

• Compounded-pattern service: This kind of service is composed of randomly
selected tasks from the 7 applications (in Table 2).

(2) We evaluate the scalability of WiseThrottling with batch-mode service, which is
a common service type in modern datacenter.

• Batch-mode service: The key feature of batch-mode service includes the dynamic
participation of new tasks and dynamic extinction of old tasks.

During the batch-mode serving process, concurrent running tasks will not exceed the
socket number at any moment. Whenever a task is completed and its socket turns into
idle, a new task will start to execute.
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Table 2 Applications drawn from user applications on Dawning Cluster

Application Type I/O
implementation

Abbr. Description

Parallel building 8-programmed Explicit PB Each application is an
8-programmed building
process for “open64”
compiler with specified
optimization flags

Paper similar 8-programmed Explicit PS A concurrently similarity
checking program. Each
application compares a
paper with the other K
papers, while K is 8 in our
work

Kmeans clustering 8-threaded Explicit KM A key algorithm from data
mining and currently be
widely applied in web
applications. The program
partitions n observations
into k clusters

BFS tree traversal 8-threaded Implicit BFS BFS algorithm from
Graph500. The graph for
searching is generated with
two parameters, s and e
(denoted with BFS.sMeN,
M and N are values of s and
e), which stand for a
graph’s scale and edge
factor, respectively

X264 8-threaded Explicit X264 An encoder program from
PARSEC 3.0

Swaptions 8-threaded Explicit SW An application of pricing a
portfolio of swaptions from
PARSEC 3.0

Wordcount Mapreduce Explicit WD A map/reduce program that
counts the words in the
input files

5.1 Platform and workloads

5.1.1 Platform

The evaluation for WiseThrottling is set up in Dawning Cluster. Currently, Dawning
Cluster datacenter has more than 56 nodes ranging from 8-core to 64-core. We perform
our experiments on an 8-socket 64-core Intel� Xeon� E7-8830 server. The OS is
Linux CentOS 6.3 with kernel 2.6.32. The server has 256 GB memory in total.
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5.1.2 Workloads

A notable factor is that diversified I/O interfaces correspond to different I/O imple-
mentation mechanisms. And the different implementations make the forms of I/O
contentions different. We take this factor into account. From this perspective, we clas-
sify I/O operations into the following two types:

• Explicit I/O: It is caused by the usage of API such as fread and fwrite, which
contends for I/O related resources and as a result suffers from I/O conflicts.

• Implicit I/O: Different from explicit I/O, implicit I/O is incurred by the memory-
associated file operations (e.g., mmap), imposing a high pressure on main memory.
Thus, swapping is usually involved in these operations, leading to I/O contentions.
This is so-called implicit I/O.

We use 7 applications to generate more than 20 workloads in our experiments.

• MapReduce application: One MapReduce application is wordcount from Hadoop-
1.1.2 package [38]. It suffers from explicit I/O contentions between the concurrent
mappers.

• Real application: Three applications are real programs from regular users in Dawn-
ing Cluster, which are parallel building compiler, paper similarity examination and
Kmeans clustering algorithm.

• Benchmark application: Three of the applications are BFS graph traversal algo-
rithm from graph500 [39], X264 encoder and Swaptions from PARSEC 3.0 [40].
These applications are used to represent some big data processing applications,
which we could not obtain due to privacy. Swaptions is a less I/O sensitive appli-
cation. We include it in Sect. 5 for evaluations on workloads mixed with both I/O
sensitive and I/O insensitive applications.

Detailed information for these applications is listed in Table 2. For brevity, we use
the abbreviations for each application in later sections and figures. In this section, a
workload is composed with either multiple multi-programmed tasks or multi-threaded
tasks. A task is either an explicit I/O or an implicit I/O application.

5.2 Experimental metrics

Three metrics are used in our evaluations. Firstly, we useWeighted Speedup (WS) [33]
to measure the overall system performance improvements brought by WiseThrottling.

For either a multi-programmed task or a multi-threaded task, Taski ,
runtimeialone is the execution time of Taski when it runs alone, i.e., without any

resource contention.
runtimeishared is the execution time of Taski when it co-runs with other task on

the same CMP server.
runtimeworkload is the execution time of the whole workload.
With the above definitions, WS for an N-task workload is calculated with the fol-

lowing equation:

WS =
N∑
i=1

runtimeialone
runtimeishared

(3)
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Fig. 20 Evaluations for
MapReduce application of
wordcount. Each application
includes 48 mappers or 64
mappers

Fig. 21 Evaluations for similar-pattern service. Each workload contains a duplicated data set testing in
dark gray bar and a different data set setting in light gray bar, respectively. The blue line represents a
“watershed” for application-8 workloads and application-4 workloads (color figure online)

The second metrics is throughput (TP). We use TP for batch-mode service aside from
WS. TP for an N-task workload is calculated as in Eq. (4):

T P = N

runtimeworkload
(4)

For MapReduce workloads, we use average runtime to measure the optimization
effects of WiseThrottling.

All evaluations in our work are made between the default OS scheduler (cfs task
scheduler + cfq I/O scheduler) with and without optimization of WiseThrottling.

5.3 Evaluations

5.3.1 Evaluations for similar-/compounded-pattern service

In this section, WiseThrottling is evaluated across more than 10 workloads of similar-
pattern service which are denoted in the x-axis of Figs. 20 and 21.

In Fig. 20, the MapReduce application of wordcount are experimented with 48
mappers and 64 mappers, respectively, that are named with WD-N (N stands for the
number of mappers). The performance improvement on average runtime is evaluated
for wordcount in Fig. 20. WiseThrottling performs intra-task scheduling between
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Fig. 22 Evaluations for compounded-mode services, ranging from C0 to C4. Each gray bar stands for the
WS improvement for a task in a workload. The blue bar at the end stands for the WS improvement for the
workload (color figure online)

the 48 mappers or 64 mappers, and improves the performance by 2.3 and 8.8 %,
respectively.

In Fig. 21, each workload contains 4 tasks or 8 tasks that are named with
“application-N” (N stands for the number of concurrent tasks). The WS improvements
across the 10 workloads in the figure illuminate the effectiveness of WiseThrot-
tling for similar-pattern services. With duplicated input data sets, WiseThrottling
improves the overall system performance by 37.9 % on average across all workloads.
With different input sets, it can achieve 29.0 % on these workloads. WiseThrot-
tling boosts 8-task workloads much more than 4-task workloads on average. And
the maximum improvement of 8-task workload achieves 127.5/207.0 % in dupli-
cated/different data set separately, while the maximum improvement of 4-task
workload is 29.5/28.0 %.

The potential optimization space of WiseThrottling closely relates to the size
of working data set, which determines the amount of I/O demands. For exam-
ple, PS-8 processes similarity examination for 8 files concurrently while KM-8
only handles one file. Therefore, PS-8 obtains much more favorable improvements
from WiseThrottling than KM-8, which is 67.8 %/18.5 % vs 14.0/8.0 %, respec-
tively, for duplicate data set and different data set. Similarly, it is reasonable that
WiseThrottling performs much better in 8-task condition than that in 4-task con-
dition, because WiseThrottling is able to potentially reduce more I/O contentions
in 8-task case. And Fig. 21 also proves that WiseThrottling is to work well in
large-scale multi-/many-core platforms, which would inevitably generate more I/O
contentions.

WiseThrottling is also evaluated across 5 compounded workloads, which are
denoted by C0–C4 in the x-axis of Fig. 22. Each workload is composed of 8 tasks,
which are randomly generated from the 7 applications (in Table 2). X264 uses native
data set. Other tasks adopt different data set in each workload. We use “Application.N”
for an application and N stands for a different data set indexes. For compounded-pattern
service, shown in Fig. 22, WiseThrottling improves the overall system performance,
ranging from 11.2 to 28.7 %. C4 is a workload, which is mixed with both I/O sensitive
applications, such as X264, KM and PB, and I/O insensitive applications, such as
SW (circled in red). We can see that the heuristic of WiseThrottling can ensure the
performance of non-I/O intensive applications.
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Fig. 23 Evaluations for batch-mode service. Each bar represents the WS improvements for every task.
The blue WS bar stands for the WS improvement for the workload. The green TP bar represents the TP
improvement for the workload. a Evaluations for 16-task batch-mode workload. b Evaluations for 32-task
batch-mode workload (color figure online)

5.3.2 Evaluations for batch-mode service

WiseThrottling is evaluated across two workloads of batch-mode service. The experi-
mental results are shown in Fig. 23. Figure 23a illuminates detailed WS improvement
for a 16-task workload (denoted in the x-axis of the figure). The WS improvement
for these tasks ranges from −1.7 to 51.8 %. The WS improvement for this workload
is 9.8 %, and the TP improvement is 24.9 %. In this workload, the majority tasks
benefit from WiseThrottling, though some tasks suffer a very trivial degradation. In
Fig. 23b, the WS improvement for a 32-task workload is 6.6 % and TP improvement
is 26.7 %.

WiseThrottling performs asynchronous and self-regulating scheduling for con-
current tasks. It brings performance improvements through taking different I/O
characteristics and sensitivities of co-runners into its consideration. Somehow, it may
focus on those who are more sensitive to I/O contentions. This may result in some
unfair phenomena as illustrated in Fig. 23. As shown in Fig. 23a, PS.1 suffers a
trivial degradation by 1.7 %. In Fig. 23b, it shows an obvious difference on WS
improvements across these tasks (denoted in the x-axis of the figure). Although the
workload could achieve WS improvement by 6.6 % and TP improvement by 26.7 %,
we also notice that the worst case (PB.2 in yellow bar) suffers a serious degradation
by 66.0 % (the best case (KM.4 in red bar) benefits a significant improvement by
858.9 %). WiseThrottling seems not fair enough for all the tasks even in the same
workload. Our future work will study it more deeply and address the unfairness
problem.

123



WiseThrottling: a new asynchronous task scheduler...

Fig. 24 Contrasts between the dynamic scheduler and WiseThrottling

5.3.3 Contrasts between preliminary work

The major difference between WiseThrottling and the dynamic scheduler in our
preliminary work [21] is the self-adjustment of dtimeslice and sensitivities. The self-
adjustment can reduce unnecessary examinations and make the scheduling more exact.

Figure 24 contrasts the different optimization effects between the dynamic sched-
uler and WiseThrottling. In the figure, the self-adjustment of I/O resource descriptions
makes WiseThrottling outperform the dynamic scheduler on workloads of x264, KM,
and BFS. These workloads only suffer from partial-time I/O contentions, i.e., I/O
contentions only happen during file reading at the first beginning. For this kind of
workloads, the fixed scheduling intervals and parameters of the dynamic scheduler
will lead to unbalanced regulation effects. It may benefit first during I/O intensive
phases of file reading, while lead to interferences during non-I/O intensive phases
when the file reading operation finish. On the contrary, for WiseThrottling, the self-
adjustment of dtimeslice and sensitivities can automatically extend and shorten the
inspection intervals, thus unnecessary interferences for co-running workloads can be
inhibited effectively. Moreover, the self-adjustment of I/O resource descriptions can
reflect I/O demands more exactly, which makes the scheduling more precise.

5.4 Analysis

The goal of WiseThrottling is to reduce the negative impacts of I/O conflicts through
coordinating I/O behaviors and throttling amount of I/O requests. In this section,
detailed analysis is made via iostat.

5.4.1 Correlation between memory utilization and WiseThrottling optimization

Performance degradation is caused by different I/O types through different ways.
Most workloads with explicit I/O such as application PS, etc., always show obvious
performance degradation. The performance degradation relates much to the severity
of I/O contentions. On the contrast, the workloads with implicit I/O applications such
as BFS are much more different. Their performance degradation correlates with the
fast-growing memory utilization (e.g., via usage of mmap). Implicit I/O contention
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Fig. 25 Correlation between memory utilization ratio and the severity of I/O contentions [21]

that can potentially be mitigated by WiseThrottling has its root in memory cost. (1)
Memory initialization costs: the allocation and initialization for memory space can
lead to I/O bursts. And when the concurrently running tasks initiate together, the
intensive I/O bursts will degrade the system performance. (2) Memory swapping costs:
optimizations such as mmap may incur the usage of memory swapping, destructing
the co-running performance severely.

The relation between the memory utilization ratio and the severity of I/O con-
tentions for implicit I/O applications has been studied in our previous work [21]. In
Fig. 25 [21], the experiments are implemented with BFS-8 and different graphs (gen-
erated with different s and e as in Table 2). Through varying the value of s and e,
different graphs can be generated, which would result in different memory sizes for
file operations. In the figure, the memory utilization ratio ranges from 26.9 to 68.6 %
(the system memory is 256 G in total). As can be seen from the figure, if the memory
utilization is just 48.4 % (or less), the I/O contention period is very short, which indi-
cates that the overall system performance is not impacted by I/O contention seriously.
Nevertheless, on the contrast, when the memory utilization reaches 68.6 %, the system
performance has to suffer the I/O contentions during nearly 3/4 of our sampling period
(30,000 s). This significant difference is caused by I/O swapping for each job and the
corresponding I/O contentions. We have provided more details about this correlation
in our previous paper [21].

Our further experiment with BFS correlates the memory utilization with the per-
formance improvement brought by WiseThrottling. As displayed in Fig. 26, with
the increasing memory utilization (26.9 − 77.1%), the I/O contentions become more
serious, causing more severe performance degradation (denoted in dark columns).
However, using our approach, WiseThrottling can offset these negative impacts.
Through carefully scheduling, WiseThrottling can avoid the I/O conflicts effectively
and shorten the I/O contention period (in Fig. 5) dramatically. As seen from the blue
curve in Fig. 26, it thus improves the overall system performance.

5.4.2 Essence of WiseThrottling optimization

To show how the reduced software service time contributes to the improvement of
system performance, we conduct the following experiments (shown in Fig. 27a, b).
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Fig. 26 Correlation between memory utilization ratio and the effectiveness of WiseThrottling

Fig. 27 Sample result of software service time with iostat at 1 s. a Samples of software service time for
the experiment of Kmeans-4 with duplicated data. b Samples of software service time for the experiment
of BFS-8.s25e16 with different data

We use two workloads, KM-4 and BFS-8 from similar-pattern service, for detailed
studies. The reasons why we use them are (1) the two workloads stand for differ-
ent degree of I/O contentions, and they could obtain different performance benefits
from WiseThrottling; (2) they represent two different I/O implementation mechanisms
(explicit and implicit I/O).

Figure 27a shows the comparison between the software service time of default
OS scheduler and WiseThrottling. The workload is KM-4 with duplicated data set,
which has less intensive I/O competitions. We observe that for most of the sample
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intervals, WiseThrottling is able to reduce the software service time, contributing to
the system performance. Figure 27b shows the same comparison. But the workload
is BFS-8 with a different data set, and is selected as a representative for implicit I/O
contentions. Figure 27b reveals the essence why WiseThrottling is able to improve
system performance. As shown in this figure, using WiseThrottling (represented by red
curve), the software service time (dominate factor in I/O latency) is reduced by more
than half compared with the default OS scheduler. Same to the above experiments, we
also sample the entire execution process. This is root of our WiseThrottling solution,
which reduces the software service time and thus contributes to the improvement of
the overall system performance significantly.

6 Conclusions and future work

We conclude that although the CMP platforms can benefit the increasingly complex
computing requirements, they pose new challenges on the resource utility and man-
agement (such as I/O problem). Some prior work in this area mainly focus on how
to improve the I/O hardware speed to meet the CPU requirement, but the software
layer (the default OS scheduling) plays a more critical role in modern systems. Our
work takes an important step in analyzing the performance of software scheduler, and
shows that it has been a new performance bottleneck in large-scale CMP systems.
Hence, we propose WiseThrottling (a user-level software component) to deal with the
I/O problem. WiseThrottling performs asynchronous and self-regulating scheduling
for concurrent tasks. It achieves a wise scheduling through taking different I/O char-
acteristics and sensitivities of co-runners into its consideration. In our future work, we
will apply WiseThrottling in more datacenter environments, and further optimize the
scheduling process.
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